
Managing software
Software is developed across a variety of disciplinary domains and should
always be treated with care. Unlike data, software is executable, it contin-
uously changes its form over time and hence requires specific steps to be
managed properly.

Let us identify the steps and tools relevant to each phase of code develop-
ment.

In the planning phase, roles and responsibilities for designing, developing
and maintaining the code should be defined. From architecture and concept
design, to development, up to revision and debugging.

During development it is highly recommended to use online platforms such
as GitHub and GitLab. They are built to monitor development through ver-
sion control and ensure effective collaboration thanks to Git’s distributed
system.

When your software reaches a satisfactory working version, it is also a good
idea to deposit it in Zenodo or in another repository specific to this type of
digital object, such as Software Heritage. They both allow the software to be
semi-automatically updated in case of further development.

Deposit both machine-readable and human-readable documentation with
your code Metadata and documentation. On the one hand, this could
simply consist of metadata and a citation file – two examples specifically
designed for software are CodeMeta and CITATION.cff. On the other hand,
human-readable documentation usually includes a README file and inline
documentation, i.e. comments within the code. Both make your code easier
to understand for anyone else (or your future self!).

Once deposited, the software requires a licence to clarify which uses are
permitted. The choice of a certain licence over another depends on your

FACT SHEETS

specific situation – whether you need to work in a community, you want a
simple and permissive licence, or you wish to share improvements.

After deposit in a repository such as Software Heritage, the code is assigned
a Persistent Identifier (PID), a licence, and disciplinary metadata describing
it. This means that it can be cited as a research output, in the same way as
a publication.

Sometimes, however, archiving your software (even with the related input
and output data) is not sufficient to ensure its reusability by contemporar-
ies, and especially by the developers of the future. Programming languages,
libraries and plug-ins change version often, and even code developed a few
months prior may no longer be up to date. Special solutions, such as con-
tainers or cloud-based systems, can simulate the system environment varia-
bles in which the code was developed and to run it again.

In the field!

The ultimate research goal of my competitive project is to develop a data analysis software.
What workflow should I follow?

Arrange a kick-off meeting with the entire development team to identify roles and responsibilities, as well as setting a work
schedule and deadlines.

Development can start directly in GitHub – creating a new repository shared by all developers facilitates collaborative work by
keeping track of changes to the code, input data and other support material.

Some cloud-based tools, such as electronic notebooks, can help document every step of the code algorithm, keeping track of
and visualising the input and output data of each function.

Linking the repository to Software Heritage before your code reaches the first operating version enables regular and automatic
harvesting and ensures that the code is properly preserved (a feature not guaranteed by GitHub!) with an appropriate
metadata schema, i.e. CodeMeta.

Various interactive online tools – such as Choose a Licence – summarise the entire documentation of the main licences in
use for software, allowing you to choose a licence that suits your project requirements, which you can include in the GitHub
repository.

To ensure proper recognition of your work, CITATION.cff files can also be generated semi-automatically, which saves a lot of
time, and then uploaded directly to the GitHub repository and thus automatically saved to Software Heritage.

Useful links

Licence chooser tool https://choosealicense.com/

Citation file generator https://citation-file-format.github.io/cff-initializer-javascript

Examples of cloud notebooks for code development https://datasciencenotebook.org/

• Software Heritage https://www.softwareheritage.org/

• CodeMeta https://codemeta.github.io/codemeta-generator/

• GitHub https://github.com/

https://choosealicense.com/
https://citation-file-format.github.io/cff-initializer-javascript
https://datasciencenotebook.org/
https://www.softwareheritage.org/
https://codemeta.github.io/codemeta-generator/
https://github.com/

	PLANNING DATA FLOWS
	Main steps in this phase
	Identifying data types
	Identifying essential metadata
	Planning how to organise data into different datasets
	Drafting a Data Management Plan

	DATA COLLECTION AND ANALYSIS
	Main steps in this phase
	Saving data in appropriate storage spaces
	Ensuring data quality
	Gathering documentation

	DATA PRESERVATION AND SHARING
	Main steps in this phase
	Choosing what data to deposit
	Choosing the most appropriate repository
	Depositing data according to FAIR principles
	Associating a license with your data

